Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(5): 703-714, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247918

RESUMO

Currently, the majority of patients with acute myeloid leukemia (AML) still die of their disease due to primary resistance or relapse toward conventional reactive oxygen species (ROS)- and DNA damage-inducing chemotherapy regimens. Herein, we explored the therapeutic potential to enhance chemotherapy response in AML, by targeting the ROS scavenger enzyme MutT homolog 1 (MTH1, NUDT1), which protects cellular integrity through prevention of fatal chemotherapy-induced oxidative DNA damage. We demonstrate that MTH1 is a potential druggable target expressed by the majority of patients with AML and the inv(16)/KITD816Y AML mouse model mimicking the genetics of patients with AML exhibiting poor response to standard chemotherapy (i.e., anthracycline & cytarabine). Strikingly, combinatorial treatment of inv(16)/KITD816Y AML cells with the MTH1 inhibitor TH1579 and ROS- and DNA damage-inducing standard chemotherapy induced growth arrest and incorporated oxidized nucleotides into DNA leading to significantly increased DNA damage. Consistently, TH1579 and chemotherapy synergistically inhibited growth of clonogenic inv(16)/KITD816Y AML cells without substantially inhibiting normal clonogenic bone marrow cells. In addition, combinatorial treatment of inv(16)/KITD816Y AML mice with TH1579 and chemotherapy significantly reduced AML burden and prolonged survival compared with untreated or single treated mice. In conclusion, our study provides a rationale for future clinical studies combining standard AML chemotherapy with TH1579 to boost standard chemotherapy response in patients with AML. Moreover, other cancer entities treated with ROS- and DNA damage-inducing chemo- or radiotherapies might benefit therapeutically from complementary treatment with TH1579.


Assuntos
Leucemia Mieloide Aguda , Nucleotídeos , Animais , Dano ao DNA , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Estresse Oxidativo , Pirimidinas , Espécies Reativas de Oxigênio , Saneamento
2.
Cancer Res ; 81(22): 5733-5744, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593524

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, exhibiting high levels of reactive oxygen species (ROS). ROS levels have been suggested to drive leukemogenesis and is thus a potential novel target for treating AML. MTH1 prevents incorporation of oxidized nucleotides into the DNA to maintain genome integrity and is upregulated in many cancers. Here we demonstrate that hematologic cancers are highly sensitive to MTH1 inhibitor TH1579 (karonudib). A functional precision medicine ex vivo screen in primary AML bone marrow samples demonstrated a broad response profile of TH1579, independent of the genomic alteration of AML, resembling the response profile of the standard-of-care treatments cytarabine and doxorubicin. Furthermore, TH1579 killed primary human AML blast cells (CD45+) as well as chemotherapy resistance leukemic stem cells (CD45+Lin-CD34+CD38-), which are often responsible for AML progression. TH1579 killed AML cells by causing mitotic arrest, elevating intracellular ROS levels, and enhancing oxidative DNA damage. TH1579 showed a significant therapeutic window, was well tolerated in animals, and could be combined with standard-of-care treatments to further improve efficacy. TH1579 significantly improved survival in two different AML disease models in vivo. In conclusion, the preclinical data presented here support that TH1579 is a promising novel anticancer agent for AML, providing a rationale to investigate the clinical usefulness of TH1579 in AML in an ongoing clinical phase I trial. SIGNIFICANCE: The MTH1 inhibitor TH1579 is a potential novel AML treatment, targeting both blasts and the pivotal leukemic stem cells while sparing normal bone marrow cells.


Assuntos
Crise Blástica/tratamento farmacológico , Enzimas Reparadoras do DNA/antagonistas & inibidores , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitose , Células-Tronco Neoplásicas/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Crise Blástica/genética , Crise Blástica/metabolismo , Crise Blástica/patologia , Proliferação de Células , Citarabina/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Leukemia ; 35(7): 2030-2042, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33299144

RESUMO

Most AML patients exhibit mutational activation of the PI3K/AKT signaling pathway, which promotes downstream effects including growth, survival, DNA repair, and resistance to chemotherapy. Herein we demonstrate that the inv(16)/KITD816Y AML mouse model exhibits constitutive activation of PI3K/AKT signaling, which was enhanced by chemotherapy-induced DNA damage through DNA-PK-dependent AKT phosphorylation. Strikingly, inhibitors of either PI3K or DNA-PK markedly reduced chemotherapy-induced AKT phosphorylation and signaling leading to increased DNA damage and apoptosis of inv(16)/KITD816Y AML cells in response to chemotherapy. Consistently, combinations of chemotherapy and PI3K or DNA-PK inhibitors synergistically inhibited growth and survival of clonogenic AML cells without substantially inhibiting normal clonogenic bone marrow cells. Moreover, treatment of inv(16)/KITD816Y AML mice with combinations of chemotherapy and PI3K or DNA-PK inhibitors significantly prolonged survival compared to untreated/single-treated mice. Mechanistically, our findings implicate that constitutive activation of PI3K/AKT signaling driven by mutant KIT, and potentially other mutational activators such as FLT3 and RAS, cooperates with chemotherapy-induced DNA-PK-dependent activation of AKT to promote survival, DNA repair, and chemotherapy resistance in AML. Hence, our study provides a rationale to select AML patients exhibiting constitutive PI3K/AKT activation for simultaneous treatment with chemotherapy and inhibitors of DNA-PK and PI3K to improve chemotherapy response and clinical outcome.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...